Question: Diagonals of rhombus ABCD intersect each other at point O. Prove that OA2 + OC2= 2AD2 + BD2/2
Solution: In ∆ AOD
OA2 = AD2 – OD2 ————-Eqn (i)
In ∆ OBC
OC2 = BC2 – OB2 ————-Eqn (ii)
Adding Eqn (i) & Eqn (ii) We get,
OA2 + OC2 = AD2 – OD2 + BC2 – OB2
= AD2 – OD2 + AD2 – OB2
= 2AD2 – OD 2 OB 2
= 2AD2 – (BD/2) 2 -(BD/2)2
= 2AD2 – BD2/4 -BD2/4
= 2AD2 – BD2/2 Proved
Leave a Reply
You must be logged in to post a comment.